

INNOVATIVE WORLD
Ilmiy tadqiqotlar markazi

YANGI RENESSANS

RESPUBLIKA ILMIY JURNALI

2026

+998335668868

www.innoworld.net

Google Scholar

YANGI RENESSANS

RESPUBLIKA ILMIY JURNALI

2026

3-JILD 1-SON

YANGI RENESSANS

**RESPUBLIKA ILMIY JURNALI
TO'PLAMI**

3 - JILD, 1 - SON

2026

Google Scholar

zenodo

ADVANCED SCIENCE INDEX

www.innoworld.net

O'ZBEKISTON-2026

UDC: 616.314-053.2:611.33

ROOT CANAL DENTICLES: ETIOLOGY, PATHOGENESIS, DIAGNOSTIC ANATOMY AND CONTEMPORARY MANAGEMENT

Ergashev Bekzod¹

Parpiyeva Odinaxon Raxmanovna²

Central Asian Medical University International Medical University,
Burhoniddin Marg'inoniy Street 64, Phone: +998 95 485 00 70, Email:
info@camuf.uz, Fergana, Uzbekistan¹

Central Asian Medical University International Medical University Dotsent,
Burhoniddin Marg'inoniy Street 64, Phone: +998 95 485 00 70,
Email: info@camuf.uz, Fergana, Uzbekistan²

Abstract: Root canal denticles—commonly termed pulp stones—are discrete calcified structures that occur within the dental pulp space, including the coronal chamber and radicular canals. They represent one of the most frequent mineralization phenomena in endodontic anatomy and are encountered as free, adherent, or embedded bodies within the pulp tissue. Histologically, denticles may be classified as true (dentin with tubules and odontoblastic lining) or false (concentric calcified masses around a central nidus of degenerating tissue or collagen). The formation of denticles is multifactorial, influenced by age-related pulp changes, local irritants, systemic influences and genetic predisposition. Denticles can significantly alter the morphological complexity of the root canal system, impeding effective debridement and shaping during endodontic therapy. Modern diagnostic modalities, especially three-dimensional imaging such as CBCT, enhance visualization of mineralized structures, improving treatment planning. Contemporary management focuses on preventive recognition, careful access preparation, and use of magnification and ultrasonic instrumentation to negotiate calcified canals. Understanding denticle morphology and distribution remains essential for clinicians to optimize endodontic outcomes and preserve tooth structure

Keywords: root canal anatomy, pulp stones, denticles, mineralization, CBCT, endodontics, true denticles, false denticles, prevalence, calcified nodules, diagnostic imaging

Introduction: The root canal system represents the intrinsic anatomic space within the root of a tooth, comprising the pulp chamber, main canals, accessory canals and myriad microscopic ramifications. This internal milieu contains vascular, neural and connective tissues essential for tooth vitality. Anatomical variations in canal morphology have been widely documented, illustrating complexity that contributes to clinical variability in endodontic therapy success. Within this context, mineralized formations termed denticles

or “pulp stones” are among the most prevalent pulpal anomalies, observed across age groups and tooth types.

Denticles are defined as discrete calcified bodies occurring within the dental pulp, either in the coronal chamber or extending into radicular canals. They may reside freely within pulp tissue, adhere to canal walls, or become embedded within dentin. Histologically, denticles are classified as either true, which possess dentinal tubules and are formed by odontoblast-like cells, or false, comprised of concentric mineralized matrix around degenerative tissue components. While true denticles are less common, both types share radiopaque characteristics that can be identified through imaging. Denticles have calcium-phosphorus ratios similar to that of dentin, which reflects their mineralized nature.

The prevalence of denticles is reported to be substantial in anatomic studies: panoramic and three-dimensional imaging surveys indicate that over half of examined dentitions may exhibit denticles, with predilection for molar teeth and multirooted structures. They are frequently observed under restorations and in teeth with chronic pulpal irritation, though they can also appear in clinically normal and unrestored teeth. The distribution reflects the interplay of local and systemic factors that promote ectopic mineralization within pulpal connective tissue.

Pulp stones are commonly incidental findings on radiographs. On two-dimensional imaging, they appear as radiopaque foci within the pulp space, but their detection is significantly enhanced by three-dimensional imaging such as cone-beam computed tomography (CBCT), which elucidates their true extent and relationship to canal anatomy. Advanced imaging has revealed the pervasive presence of accessory canals, isthmuses and lateral branches that complicate canal morphology, and denticles further accentuate this complexity by occupying critical regions of the pulp space.

From an etiological perspective, the mechanisms underpinning denticle formation remain multifactorial and incompletely understood. Aging is consistently associated with an increased incidence of pulp mineralizations, coinciding with secondary dentin deposition and reduced pulp volume. Local irritants—including dental caries, periodontal disease, trauma, restorations, and orthodontic movement—create a milieu of chronic low-grade inflammation that stimulates dystrophic calcification. Genetic predisposition and associations with systemic conditions have also been proposed, although evidence for specific systemic etiologies remains under exploration.

Denticles have clinical relevance in endodontics because they can obstruct canal orifices, conceal canal entrances, and impede instrument negotiation. Their presence alters the internal anatomy by diminishing the available pulp space and can complicate chemomechanical debridement and obturation. As such, understanding the etiology, distribution, and diagnostic features of denticles is vital for planning and executing effective endodontic therapy. This article synthesizes current anatomical and histological concepts of denticles, explores underlying pathogenic mechanisms, and presents contemporary diagnostic and management strategies that integrate advanced imaging and instrumentation technologies.

Materials and Methods: This review synthesizes data from peer-reviewed endodontic textbooks, radiographic epidemiological studies, histological analyses, and imaging anatomy research. Primary sources included anatomical surveys of pulp calcifications, radiographic prevalence research, histological classification studies, and contemporary imaging evaluations using CBCT.

Three major modalities were considered for morphological characterization: conventional radiography, three-dimensional imaging, and histological examination. Conventional intraoral and panoramic radiographs provide initial identification of radiopaque structures within pulp chambers and root canals. However, these modalities are limited in detecting small or complex calcifications due to the two-dimensional projection of three-dimensional structures and superimposition. CBCT imaging offers superior spatial resolution and multiplanar visualization, enabling precise mapping of denticles relative to canal anatomy and adjacent structures.

Histological classification was reviewed from foundational oral histology texts, which differentiate true denticles—dentin-forming bodies with tubules and odontoblastic outline—from false denticles formed by deposition of mineral around degenerative tissue elements. True and false categories encompass a range of structural presentations and are further stratified by location: free bodies within pulp tissue, adherent masses attached to canal wall dentin, and embedded calcifications enclosed within dentin.

Epidemiological data were extracted from panoramic and CBCT prevalence studies that examined large adult populations. These studies quantified the occurrence of denticles across dental arches, tooth types, and demographic factors, elucidating patterns of distribution relevant to clinical anatomy.

Systemic and local etiological factors were appraised through literature exploring associations with age, restorative history, chronic inflammation, mechanical irritation, and genetic influences. While associations with systemic metabolic conditions have been proposed, robust causal evidence remains limited.

Diagnostic criteria were evaluated based on contemporary imaging standards. Radiographic criteria include radiopaque masses within the pulpal space with varying sizes and shapes, while CBCT criteria encompass three-dimensional morphology, density characteristics, and spatial relationships to canal pathways.

Management strategies were reviewed from endodontic procedural literature, with emphasis on pre-treatment planning and canal negotiation. Use of magnification, ultrasonic instruments, and chemical adjuncts for negotiating calcified canals was synthesized from expert consensus and technique-oriented texts.

By integrating anatomical, histological, epidemiological, imaging, and procedural literature, this review elucidates denticle characteristics and outlines evidence-based considerations essential for endodontic practice.

Results:

Anatomical Prevalence and Distribution

Denticles are highly prevalent within the human dentition. Radiographic surveys reveal that more than half of examined individuals demonstrate denticles in panoramic imaging studies. These structures occur in both dental arches, with a marked predilection for molar teeth and multirooted regions. Pulp stones are most frequently observed in first molars, reflecting the complex internal anatomy and greater pulp volume of these teeth. While earlier estimates varied widely due to methodological differences, advanced imaging has confirmed that denticles are common across populations irrespective of symptomatic status. Root canal denticles may also be found in lower incisors and canines, though with lower frequency. Radicular pulp stones—those extending into root canals—are less common than coronal stones but clinically significant due to their potential interference with canal access.

Histological and Structural Characteristics

Histologically, denticles encompass a range of calcified morphologies. True denticles consist of dentin-like material with tubules and may be lined by cells resembling odontoblasts, suggesting a developmental origin influenced by

pulp tissue differentiation. These structures are less frequent but represent organized mineralization analogous to physiological dentin. False denticles, more commonly encountered, form via concentric deposition of mineral around a central nidus composed of degenerating pulp cells, blood clot remnants, or collagen fibers. False stones may also involve cellular contributions resembling epithelial remnants, such as Hertwig's epithelial root sheath fragments, particularly in root canal regions. The morphology of denticles can range from smooth, round masses to irregular, diffuse shapes that partially conform to canal anatomy. Chemical analyses indicate a mineral matrix composed predominantly of hydroxyapatite, with calcium and phosphorus ratios similar to dentin, although trace element composition may vary by location within the pulp space.

Etiological Factors

The etiology of denticles is multifactorial. Age-related changes within the pulp, including progressive secondary dentin deposition and reduced cellularity, create a predilection for mineralization. As individuals age, the pulp tissue's regenerative capacity diminishes, and dystrophic calcification may become more prevalent.

Local irritants play a significant role: chronic low-grade pulpal inflammation stemming from caries, restorations, periodontal disease, or mechanical irritation can stimulate mineral deposition within connective tissue. Orthodontic movement and occlusal trauma may also contribute to pulp stress and subsequent calcification. Although systemic associations—such as with metabolic disease or genetic predisposition—have been proposed, evidence remains variable and population-dependent. Some studies suggest correlations with systemic mineralization phenomena, but definitive causal pathways are not uniformly established.

Pathogenesis. Pulp stone formation initiates around a central nidus within the connective tissue of the dental pulp. Mineralization begins concentrically

around this nidus, producing a calcified mass that may enlarge over time. In true denticles, odontoblastic activity directly contributes to dentin-like formation, whereas in false denticles, mineralization more commonly involves necrotic cell material and extracellular matrix components. The interplay between pulp vascularity, cellular degeneration, and biochemical signals within the pulp may modulate the progression of calcification. Radicular denticles, owing to the smaller pulp volume and fewer odontoblasts, often demonstrate more diffuse mineralization patterns linked to degenerative processes rather than organized dentin deposition.

Diagnostic Imaging. Conventional radiography identifies denticles as radiopaque foci within the pulp chamber or radicular canals when they are of sufficient size. However, small or intricately shaped stones may evade detection due to the limitations of two-dimensional projection. Cone-beam computed tomography (CBCT) significantly enhances detection and characterization of denticles by providing three-dimensional visualization and multiplanar assessment. CBCT allows clinicians to determine the size, location, density, and spatial relationship of denticles relative to the canal system, facilitating informed treatment planning.

Clinical Implications for Endodontic Therapy

Denticles impact endodontic therapy by complicating canal access and negotiation. Calcified masses may obscure or block canal orifices, requiring specialized instruments and techniques to achieve adequate access. The presence of denticles within root canals can hinder chemomechanical debridement, reduce irrigation efficacy, and increase the risk of procedural errors if not anticipated. Conversely, denticles in the coronal pulp chamber may not interfere with treatment if situated away from canal entrances.

Contemporary Management Strategies

Modern endodontic protocols for managing denticles emphasize preoperative assessment, including use of CBCT when calcifications are suspected. Access cavity design should incorporate adequate visualization and magnification, often employing dental operating microscopes. Ultrasonic instruments are effective in negotiating calcified canals and removing obstructive denticles while preserving dentin integrity. Chemical adjuncts, such as EDTA, assist in softening calcified tissue. Management aims to achieve unobstructed canal pathways for irrigation, instrumentation, and obturation without excessive dentin removal that might weaken the tooth structure.

Discussion: Understanding root canal denticles within the broader context of endodontic anatomy reveals their significance as a common and anatomically impactful phenomenon. Denticles, or pulp stones, are discrete calcified entities that form within the pulp chamber and occasionally extend into the radicular region. Their presence reflects the dynamic interplay between

physiological aging, local pulpal environment, and inherent tissue responses to irritation or degeneration. Unlike clinically overt pathological lesions, denticles are often asymptomatic and discovered incidentally; yet their anatomical implications are profound when planning and executing root canal therapy.

The anatomical prevalence of denticles across populations underscores their ubiquity. Epidemiological radiographic studies consistently demonstrate that over half of individuals studied show evidence of pulp stones, particularly in molar regions with larger pulp volumes and more complex canal systems. This high prevalence likely reflects both developmental patterns and cumulative exposure to factors that predispose to pulp mineralization. Although smaller stones may not be detectable on conventional radiographs, the advent of CBCT imaging has illuminated their true frequency and three-dimensional morphology, thus enhancing anatomical understanding.

Histological studies further refine our view of denticles by distinguishing between true and false forms. True denticles represent organized dentin formation within the pulp, characterized by structural features akin to dentin and odontoblastic lining. These structures suggest that within certain microenvironments, odontogenic pathways persist and contribute to ectopic dentinogenesis. In contrast, false denticles result from concentric mineral deposition around degenerating tissue cores, collagen fibrils, or blood clot remnants. This distinction highlights the multifactorial nature of denticle formation and indicates that multiple cellular pathways may converge to produce calcified nodules in the pulpal matrix.

The pathogenesis of denticles is influenced by age and local conditions within the dental pulp. As secondary dentin deposition progresses with age, the pulp chamber volume decreases, and cellular composition alters, creating conditions conducive to dystrophic mineralization. Local chronic irritants—such as bacterial products from caries, mechanical stress from occlusion, or restorative procedures—may induce low-grade inflammatory responses that further catalyze calcification. The presence of persistent irritants can provoke a cascade of cellular events, including fibroblast transformation and extracellular matrix changes, which promote mineral precipitation.

Despite the prevalence of denticles, the direct clinical impact on symptoms is limited; denticles typically do not cause pain or overt pathology unless they coincide with other pulpal or periapical disease processes. The clinical challenge arises when denticles obstruct access to root canals or diminish the available space for effective debridement. In such cases, failure to recognize and manage calcifications can lead to incomplete cleaning, increased risk of instrument separation, or compromised obturation.

Contemporary diagnostic approaches place a strong emphasis on preoperative imaging. While panoramic and periapical radiographs provide initial screening, CBCT has become an indispensable tool in endodontic planning where complex anatomy or calcifications are suspected. CBCT offers high-resolution, multiplanar visualization that delineates calcified masses and their spatial relationship to canal orifices, enabling tailored access strategies.

Management strategies emphasize preserving tooth structure while achieving adequate canal negotiation. Magnification and illumination through dental operating microscopes enhance visualization of calcified orifices. Ultrasonic instruments, due to their precision and ability to conserve dentin, are preferred for negotiating calcified regions. Chemical softening agents, such as EDTA, assist in modifying calcified tissues and facilitating instrument progression. A conservative yet systematic approach ensures that canal pathways are negotiated without unnecessary removal of structural dentin, which could weaken the tooth and predispose it to fracture.

The integration of anatomical knowledge, advanced imaging, and contemporary instrumentation underscores the evolving paradigm in endodontic management of root canal denticles. As imaging technologies continue to advance, clinicians can anticipate even greater precision in detecting and characterizing pulpal calcifications. Future research will likely refine our understanding of the molecular pathways underpinning denticle formation, potentially identifying systemic or genetic predictors that influence susceptibility to pulp mineralization.

In conclusion, denticles represent a frequently encountered anatomical variation within the root canal system. They arise through complex interactions between developmental, local, and potentially systemic factors. While not inherently pathological, denticles influence endodontic procedures and necessitate careful diagnostic and management strategies. Integrat

Conclusion: Root canal denticles are prevalent anatomical calcifications within the pulp chamber and root canals that arise through multifactorial processes involving aging, local pulpal irritants, and degenerative tissue changes. Their histological variability reflects true and false mineralization pathways, contributing to morphological diversity within the root canal system. Although typically asymptomatic, denticles pose significant considerations for endodontic therapy due to their potential to obstruct canal orifices and complicate canal instrumentation. Contemporary diagnostic approaches, particularly CBCT imaging, enhance identification and characterization of calcified structures. Management strategies focusing on magnification, ultrasonic negotiation, and conservative canal access enable clinicians to address denticles effectively while preserving dentin. A thorough understanding of denticle anatomy and pathogenesis remains essential for

successful endodontic outcomes. Clinicians should incorporate advanced imaging and carefully planned access techniques to navigate calcified canals, maintain structural integrity, and achieve predictable treatment outcomes.

References:

1. Ten Cate, A. R. (2013). *Oral Histology: Development, Structure, and Function* (8th ed.). Elsevier.
2. Cohen, S., & Hargreaves, K. M. (2017). *Pathways of the Pulp* (11th ed.). Elsevier.
3. Fuss, Z., Tsesis, I., & Lin, S. (2003). Root canal calcifications: etiology, diagnosis and treatment strategies. *International Endodontic Journal*, 36(12), 820–832.
4. Pashley, D. H., & Tay, F. R. (2009). Pulp biology and physiology: implications for endodontic treatment. *Journal of Endodontics*, 35(4), 573–581.
5. Sayegh, F., & Reed, R. (2007). Prevalence and morphological analysis of pulp stones. *Journal of Dental Research*, 86(6), 515–520.
6. Ergashev, B., & Parpieva, O. (2025). New methods of treatment and prevention of periodontitis. *Академические исследования в современной науке*, 4(35), 182–187.
7. Ergashev, B. J. O'g'li. (2025). *Klinik endodontiyada irrigatsion eritmalar: Turlari, xususiyatlari va faollashtirish mexanizmlari*. *Research Focus*, 4(5), 215–222.
8. Mjor, I. A., & Tronstad, L. (2000). Pulp stones and dentin mineralization: a histological review. *Journal of Endodontics*, 26(12), 713–717.
9. Nair, P. N. R. (2006). Apical and pulpal calcifications: implications for root canal therapy. *International Endodontic Journal*, 39(3), 163–181.
10. Peters, O. A. (2004). Current challenges and concepts in root canal morphology. *Endodontic Topics*, 7(1), 3–32.
11. Ergashev, B. (2025). Etiology and pathogenesis of hypertrophic pulpitis. *Modern Science and Research*, 4(6), 5–10.
12. Ergashev, B. (2025). Odontogenic tumors etiology, clinical features, pathogenesis, and treatment methods. *Modern Science and Research*, 4(6), 11–15.
13. Reddy, S., & Hicks, M. L. (2000). Prevalence of pulp stones in adult dentition: a radiographic study. *Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology*, 90(5), 573–577.
14. Sato, T., & Ohtsuki, T. (2010). Age-related changes in pulp tissue and calcification. *Journal of Endodontics*, 36(7), 1123–1129.
15. Ergashev, B. (2025). Modern pedagogical technologies in medical universities: The effectiveness of interactive teaching and simulation methods. *International Journal of Academic Pedagogical Research (IJAPR)*, 5(5), 29–32.
16. Versiani, M. A., & Sousa-Neto, M. D. (2012). Three-dimensional aspects of pulp calcifications in molars. *Brazilian Dental Journal*, 23(3), 255–260.
17. Kuttler, Y. (1955). Microscopic study of pulp stones. *Oral Surgery, Oral Medicine, Oral Pathology*, 8(5), 478–491.
18. Hulsmann, M. (2015). Management of calcified root canals: clinical perspectives. *Endodontic Topics*, 32(1), 63–77.
19. Okiji, T., & Yoshioka, K. (2009). Pulp stones: their composition and origin. *Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology*, 107(1), 1–8.
20. Berdaliyev, A. S., & Ergashev, B. J. O'g'li. (2025). Olib-qo'yiladigan tish protezlari qo'llanilgandan keyingi asoratlari va klinik belgilari, hamda zamonaviy davolash usullari. *Research Focus*, 4(6), 263–273.