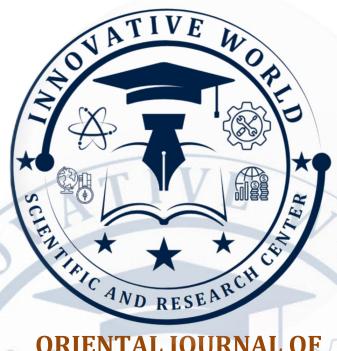


ISSN: 3030-3591

ORIENTAL JOURNAL OF MEDICINE AND NATURAL SCIENCES

SHARQ TIBBIYOT VA TABIIY FANLAR JURNALI



Scientific Journal

- Medicine
- Pharmaceuticals
- Biology
- Chemistry
- Geology
- Agriculture

€ +998 33 5668868 ∰ www.innoworld.net

ORIENTAL JOURNAL OF MEDICINE AND NATURAL SCIENCES

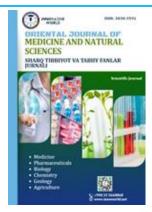
Volume 2, Issue 4 2025

Journal has been listed in different indexings

ResearchGate

zenodo

The offical website of the journal:


www.innoworld.net

O'zbekiston-2025

᠕

Volume 2 Issue 4 | **2025** |

Page | 2

Ранняя диагностика микроэлементозов после операций по поводу ожирения: лабораторная диагностика у 110 пациентов

Мадарипова Дилдора Азимовна

Ассистент кафедры Гематологии и клинической лабораторной диагностики, Нефрологии и Гемодиализ Бухарского государственного медицинского института madaripova.dildora@bsmi.uz

Аннотация: хирургическое лечение ожирения (бариатрическая хирургия) эффективно снижает массу тела, однако нередко сопровождается нарушениями обмена микроэлементов.

Целью данного исследования являлась ранняя диагностика микроэлементозов у пациентов, перенёсших бариатрическое вмешательство, и определение факторов риска их развития в раннем послеоперационном периоде.

Материалы и методы: обследованы 130 пациентов, перенесших различные виды хирургического лечения ожирения. Проводилась оценка концентраций железа, цинка, меди, магния, селена, витамина В12 и фолатов в динамике — через 1, 3 и 6 месяцев.

Результаты исследования: установлено, что дефицит микроэлементов развивается в более чем 60% случаев уже к 3-му месяцу после операции, причём чаще у женщин и пациентов с изначально низким уровнем гемоглобина и ферритина. Наиболее часто наблюдался дефицит железа (56%), цинка (41%) и меди (30%).

Заключение: исследование подчёркивает необходимость рутинного мониторинга микроэлементного статуса с первого месяца после операции и раннего назначения корректирующей терапии.

Ключевые слова: бариатрическая хирургия, микроэлементоз, дефицит железа, цинк, медь, постбариатрические осложнения.

Введение. Согласно данным ВОЗ, ожирением страдает более 650 миллионов взрослых по всему миру, и эта цифра продолжает расти[5]. Среди эффективных методов лечения морбидного ожирения особое место занимает бариатрическая хирургия, включающая такие методы как рукавная гастрэктомия, билиопанкреатическое шунтирование и гастрошунтирование по Ру [12]. Несмотря на положительное влияние на массу тела, бариатрическая хирургия связана с определёнными рисками, среди которых нарушения микроэлементов всасывания [1].Микроэлементозэто состояние, при котором нарушается концентрация микроэлементов в организме, приводя к метаболическим,

Volume 2 Issue 4 | **2025** |

иммунологическим и неврологическим расстройствам [4]. После бариатрических операций это состояние может возникать в результате снижения секреции желудочного сока, уменьшения пищевого объема и нарушений всасывания в изменённом желудочно-кишечном тракте [2,9].

Микроэлементозы после хирургического лечения ожирения представляют собой комплекс метаболических нарушений, возникающих в результате дефицита или избытка микроэлементов, вызванных изменениями анатомо-физиологических условий усвоения желудочно-кишечном тракте веществ питательных бариатрических операций [3,6]. Эти состояния приобретают особую клиническую значимость ввиду высокой распространённости выраженности нутритивных расстройств у пациентов, перенёсших операции по снижению массы тела, особенно шунтирующие или комбинированные (рукавная гастрэктомия, вмешательства билиопанкреатическое шунтирование, гастрошунтирование и др.)[11].

Этиопатогенез. После бариатрических операций нарушается всасывание микроэлементов (железа, цинка, меди, селена, кальция, магния и др.) из-за сокращения объёма желудка, обхода участков тонкой кишки, изменения рН среды и микробиоты. Снижение секреции желудочного сока и ферментов, а также недостаточное поступление пищи ведёт к снижению биодоступности микроэлементов. Усиление воспалительных процессов и катаболизма после операции может способствовать более быстрому расходованию запасов микроэлементов [7,8].

Наиболее распространённые дефициты:железо анемия, хроническая усталость, когнитивные нарушения; цинк дерматологические проявления, замедление заживления ран, снижение иммунитета; кальций и витамин D — остеопения, остеопороз, мышечная слабость; магний — нейромышечные и сердечно-сосудистые симптомы; неврологические расстройства, анемия: селен медь кардиомиопатия, слабость, нарушение щитовидной функции; витамины группы В, особенно В12 — неврологические симптомы, анемия [10].

Ранняя диагностика и коррекция дефицита микроэлементов имеет решающее значение для предотвращения осложнений и улучшения отдалённых результатов хирургического лечения ожирения. Несмотря на это, данная проблема остаётся недостаточно изученной в ранние сроки после операции.

Цель и задачи исследования

Цель:

Оценить частоту, характер и динамику развития микроэлементозов в раннем послеоперационном периоде у пациентов, перенёсших бариатрическую операцию.

Задачи:

Volume 2 | Issue 4 | 2025 |

Page | 66

- 1. Оценить уровни ключевых микроэлементов через 1, 3 и 6 месяцев после операции.
- 2. Определить взаимосвязь между дефицитом микроэлементов и клинико-лабораторными показателями.
- 3. Выявить группы риска и обосновать необходимость ранней диагностики и коррекции нарушений.

Материалы и методы

Дизайн исследования: проспективное, когортное, с динамическим наблюдением. Пациенты были отобраны в рандомизированном порядке в Бухарском областном многопрофильном медицинском центре в отделении хирургии. Для исследования было подобраны пациенты в возрастной категории от 20 до 55 лет проведенные бариатрические операции по поводу ожирения. Участие в научном исследовании было строго по устному согласие пациентов.

Период: Январь 2023 — Июнь 2025.

Характеристика пациентов

Параметр	Значение
Общее число пациентов	130
Женщины	88 (67.7%)
Мужчины	42 (32.3%)
Средний возраст	39.2 ± 9.4 лет
Средний ИМТ до операции	42.8 ± 6.1 кг/м ²
Виды операций	Рукавная гастрэктомия – 71%, Шунтирование – 29%
Сахарный диабет 2 типа	41 (31.5%)
Дефицит железа до операции	9 (6.9%)

Методы обследования:

У всех пациентов собирался тащительный анамнез до операции, после операции в соответствующих периодах.

Все пациенты проходили анализы на:

- Гемоглобин, ферритин, сывороточное железо
- Цинк, медь, магний, селен (атомно-абсорбционная спектроскопия)
- Витамин В12, фолиевая кислота (ИФА)
- Биохимические показатели (альбумин, общий белок, СРБ)

M

Повторное обследования проводились через 1, 3 и 6 месяцев после операции. Учитывались жалобы (астения, онемение, выпадение волос, судороги).

Результаты исследования.

1. Общая частота микроэлементозов

К 6-му месяцу после операции дефицит хотя бы одного микроэлемента был выявлен у 81 пациента (62.3%).

2. Частота дефицитов по микроэлементам

Микроэлемент	1 мес (%)	3 мес (%)	6 мес (%)
Железо	31.5	48.5	56.2
Цинк	22.3	34.6	41.5
Медь	11.5	25.4	30.8
Магний	5.4	7.7	10.8
Селен	3.1	6.2	8.5
Витамин В12	19.2	27.7	34.6
Фолиевая кислота	14.6	23.1	29.2

3. Симптоматика

- Астения: 44%
- Выпадение волос: 38%
- Онемение и парестезии: 21%
- Судороги в ногах: 12%
- Глоссит, хейлит: 9%

4. Гендерные различия

Женщины имели более выраженный дефицит железа и цинка (р < 0.05), особенно при наличии менструальных нарушений и анемии до операции.

5. Сопутствующие факторы риска

- Предоперационный низкий уровень ферритина (<20 нг/мл)
- Высокий уровень СРБ
- Отказ от белковой пищи после операции
- Недостаточный приём назначенных поливитаминов (43% пациентов не соблюдали рекомендации).

Статистический анализ

Для подтверждения статистической значимости различий между пациентами с выявленными микроэлементозами и без таковых был проведён сравнительный анализ клинико-лабораторных показателей. Всего были выделены две группы:

M

Volume 2 Issue 4 | 2025 |

www.innoworld.net

- Группа 1 (n = 81): пациенты с выявленным дефицитом ≥1 микроэлемента
- Группа 2 (n = 49): пациенты без микроэлементозов на протяжении 6 месяцев наблюдения
 - Уровень гемоглобина

Средний уровень гемоглобина в группе 1 составил 113,2 \pm 9,1 г/л, в группе 2 - 123,4 \pm 8,3 г/л.

При сравнении двух групп методом Стьюдента выявлена статистически значимая разница:t = 6,49; p < 0,0001

- Уровень ферритина

Среднее значение ферритина:

- Группа 1: 21,9 ± 4,8 нг/мл
- Группа 2: 35,1 ± 6,0 нг/мл
 Различие между группами достоверно:t = 12,07; р < 0,0001
 - Гендерный состав

Женщины составили:

- в группе 1 65 из 81 (80,2%)
- в группе 2 23 из 49 (46,9%)

При анализе различий в распределении по полу с помощью критерия χ^2 Пирсона: $\chi^2 = 13,99$; p = 0,0002

Таким образом, женский пол является достоверным фактором риска развития дефицитов микроэлементов в послеоперационном периоде.

- Отказ от витаминно-минеральной поддержки Нарушение режима приёма поливитаминов наблюдалось:
- у 52 из 81 пациентов с дефицитом (64,2%)
- у 8 из 49 пациентов без дефицита (16,3%)
 Статистически значимая разница: х² = 26,3; р < 0,00001
 Выводы по статистике:
- 1. Пациенты с дефицитом микроэлементов имели достоверно более низкие уровни гемоглобина и ферритина.
- 2. Женщины и лица, не соблюдающие рекомендации по приёму добавок, статистически чаще страдали микроэлементозами.
- 3. Эти данные подтверждают клиническую необходимость раннего лабораторного мониторинга и индивидуального подбора нутритивной поддержки.

Обсуждение

Результаты исследования подтверждают гипотезу о высокой частоте дефицита микроэлементов после бариатрических вмешательств. Несмотря на начальное нормальное содержание микроэлементов у большинства пациентов, уже к 3 месяцу после операции наблюдается значительное снижение их уровней.

Железо — наиболее чувствительный показатель, особенно у женщин. Это связано с понижением кислоты желудка (гипохлоргидрия),

Volume 2 | Issue 4 | 2025 |

нарушением преобразования железа в усваиваемую форму и исключением мясной пищи.

Цинк участвует в регенерации тканей, иммунитете и синтезе белков. Его дефицит ассоциировался с выпадением волос и замедленным заживлением ран.

Медь и витамин B12 — критически важны для нервной системы. Их дефицит может приводить к необратимым неврологическим нарушениям.

Селен и магний — хотя и реже встречаются в дефиците, их роль в антиоксидантной защите и мышечной функции делает необходимым их контроль.

Recommendation

На основании полученных данных разработан алгоритм раннего мониторинга и коррекции микроэлементозов:

До операции:

- Скрининг на железо, В12, ферритин
- Назначение базовых поливитаминов
- 1 месяц после операции:
- Контроль железа, В12, альбумина
- При дефиците парентеральная коррекция
- 3 месяца после операции:
- Расширенный контроль микроэлементов (Fe, Zn, Cu, Mg, Se, B12)
- Дифференцированное назначение БАДов, инфузий
- 6 месяцев и далее:
- Поддерживающая терапия
- Диетологический контроль

Conclusion

Бариатрическая хирургия, несмотря на выраженную эффективность, сопровождается риском развития микроэлементозов уже в первые месяцы после вмешательства. Проведённое исследование показало, что систематическое лабораторное наблюдение за состоянием микроэлементного статуса и ранняя коррекция выявленных дефицитов позволяют предупредить развитие осложнений и улучшить реабилитацию.

И от всех указанных исходит следующие выводы.

- 1. У 62.3% пациентов развиваются микроэлементозы к 6-му месяцу после операции.
- 2. Наиболее часто встречается дефицит железа (56%), цинка (41%) и меди (30%).
- 3. Женщины имеют повышенный риск дефицитов.
- 4. Отказ от витаминных добавок и белковой пищи ключевые факторы риска.
- 5. Рекомендуется внедрение протоколов раннего лабораторного мониторинга.

Volume 2 Issue 4 | 2025 |

www.innoworld.net

References:

- 1. Гущин А.Е., Иванова И.Ю. Дефицит витамина В12 и фолатов после операций по снижению массы тела. *Врач*. 2019;(10):67–71.
- 2. Панченко Е.П., Кулакова Е.В. Дефицит микронутриентов у пациентов после бариатрических операций. *Ожирение и метаболизм*. 2020;17(4):5–10.
- 3. Чернобровкина Е.А., Соловьев С.В. Ранняя диагностика и коррекция микроэлементозов после рукавной гастрэктомии. *Современные проблемы науки и образования*. 2021;(5):73–79.
- 4. Яковлев А.А., Артемьева И.А. Нарушения минерального обмена после желудочного шунтирования: подходы к коррекции. *Хирургия. Журнал им. Н.И. Пирогова*. 2018;(7):35–40.
- 5. Becker D.A., Balcer L.J., Galetta S.L. The neurological complications of bariatric surgery. *Archives of Neurology*. 2004;61(8):1185–1189.
- 6. Bloomberg R.D., Fleishman A., Nalle J.E., Herron D.M., Kini S. Nutritional deficiencies following bariatric surgery: what have we learned? *Obesity Surgery*. 2005;15(2):145–154.
- 7. Fried M., Yumuk V., Oppert J. M., et al. Interdisciplinary European Guidelines on Metabolic and Bariatric Surgery. *Obesity Surgery*. 2014;24(4):487–500. doi:10.1007/s11695-014-1227-8
- 8. Lefebvre P., Tzimas G.N., Messing B. Micronutrient deficiencies in obese patients undergoing bariatric surgery: Prevention and treatment. *Surgery for Obesity and Related Diseases*. 2021;17(9):1631–1640.
- 9. Mechanick J.I., Apovian C.M., Brethauer S., et al. Clinical Practice Guidelines for the Perioperative Nutrition, Metabolic, and Nonsurgical Support of Patients Undergoing Bariatric Procedures 2019 Update. *Obesity (Silver Spring)*. 2020;28(1):01–058. doi:10.1002/oby.22719
- 10. Rojas P., Radhakrishnan N., Belenchia A.M., et al. Iron deficiency in obesity and after bariatric surgery: Pathophysiology and clinical implications. *Obesity Reviews*. 2021;22(6):e13250. doi:10.1111/obr.13250
- 11. Via M. Mechanisms and consequences of malabsorption following bariatric surgery. *Current Opinion in Clinical Nutrition and Metabolic Care*. 2012;15(5):593–597.

 \mathcal{N}

Volume 2 | Issue 4 | 2025 |